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(Bacl(ground: Thymosin 4 (T 4) promotes differentiation of oligoprogenitor cells (OPCs) to oligodendrocytes in animal
Results: TB4 increased expression of microRNA-146a and suppressed expression of TLR (Toll-like) proinflammatory

Conclusion: T34 suppresses the TLR proinflammatory pathway by up-regulating miR-146a to promote OPC differentiation.
Signficance: Learning how T34 promotes oligodendrogenesis supports its development for clinical studies.

J

Thymosin B4 (TB4), a G-actin-sequestering peptide, im-
proves neurological outcome in rat models of neurological
injury. Tissue inflammation results from neurological injury,
and regulation of the inflammatory response is vital for neuro-
logical recovery. The innate immune response system, which
includes the Toll-like receptor (TLR) proinflammatory signal-
ing pathway, regulates tissue injury. We hypothesized that T 34
regulates the TLR proinflammatory signaling pathway. Because
oligodendrogenesis plays an important role in neurological
recovery, we employed an in vitro primary rat embryonic cell
model of oligodendrocyte progenitor cells (OPCs) and a mouse
N20.1 OPC cell line to measure the effects of T34 on the TLR
pathway. Cells were grown in the presence of T 34, ranging from
25 to 100 ng/ml (RegeneRx Biopharmaceuticals Inc., Rockville,
MD), for 4 days. Quantitative real-time PCR data demonstrated
that T4 treatment increased expression of microRNA-146a
(miR-146a), a negative regulator the TLR signaling pathway, in
these two cell models. Western blot analysis showed that T34
treatment suppressed expression of IL-1 receptor-associated
kinase 1 (IRAK1) and tumor necrosis factor receptor-associated
factor 6 (TRAF6), two proinflammatory cytokines of the TLR
signaling pathway. Transfection of miR-146a into both primary
rat embryonic OPCs and mouse N20.1 OPCs treated with T34
demonstrated an amplification of myelin basic protein (MBP)
expression and differentiation of OPC into mature MBP-
expressing oligodendrocytes. Transfection of anti-miR-146a
nucleotides reversed the inhibitory effect of T34 on IRAK1 and
TRAF6 and decreased expression of MBP. These data suggest
that T34 suppresses the TLR proinflammatory pathway by up-
regulating miR-146a.
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Thymosin 84 (TB4)” is a 5-kDa, 43-amino acid peptide origi-
nally isolated from the thymus gland (1). T 34 regulates the cellular
actin-cytoskeleton and cellular migration by sequestering G-actin
(2,3). Most mammalian cells express T84, and its observed actions
in dermal wound and cardiac ischemia models are anti-inflamma-
tory and proangiogenic (4). In addition, T 34 promotes cardiomyo-
cyte and keratinocyte migration in these models. T34 improves
functional outcome after experimental induction of multiple scle-
rosis, embolic stroke, and traumatic brain injury (5-7). In all three
models, improvement in neurological outcome is associated with
oligodendrogenesis (i.e. differentiation of oligoprogenitor cells
(OPCs) into mature myelin-secreting oligodendrocytes (OLs)).
Oligodendrogenesis contributes to remyelination after neurologi-
cal injury by differentiation of OPCs into mature myelin-express-
ing OLs.

Neurorestorative agents act on intact parenchymal cells to
promote neurogenesis, angiogenesis, oligodendrogenesis, and
axonal remodeling during the recovery phase of neurological
injury and thereby enhance neurological recovery (8). There-
fore, T4 is a candidate neurorestorative agent when adminis-
tered in animal models of multiple sclerosis, stroke, and trau-
matic brain injury (9). However, its mechanisms of action are
unclear and require investigation. Toll-like receptors (TLRs)
are pattern recognition receptors that recognize conserved
molecular patterns of pathogens. In addition to pathogens,
TLRs also recognize damage-associated molecular patterns,
which are molecular patterns of endogenous host debris
released during cellular injury or death (10, 11). This debris can
be extracellular matrix protein, oxidized proteins, RNA, or
DNA. Once recognition occurs, the TLRs are stimulated,
resulting in activation of many signaling pathways, including
those pathways involving the mitogen-activated protein ki-
nases (MAPKs) and the nuclear factor NF-«B transcription fac-
tors. The MAPKs activate OL differentiation; therefore, TLR

2 The abbreviations used are: T34, thymosin 84; OPC, oligoprogenitor cell; OL,
oligodendrocyte; TLR, Toll-like receptor; MBP, myelin basic protein; qrtPCR,
quantitative real-time PCR.
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signaling may be involved in oligodendrogenesis as well as in
regulating the inflammatory response (12, 13). In addition, the
TLR pathways are affected by miR-146, which down-regulates
proinflammatory cytokine production and activation of inflam-
matory pathways (14—17). TLR4, is a well studied TLR that
mediates its proinflammatory response through three proteins,
IRAK1 (IL-1 receptor-associated kinase 1), IRAK4, and TRAF6
(tumor necrosis receptor associated factor 6) (18). By targeting
IRAK1 and TRAF6, miR-146 inhibits NF-kB activation. We
therefore hypothesized that T84 regulates the TLR proinflam-
matory signaling pathway by specifically regulating miR-146a
to promote differentiation of OPCs to mature myelin basic pro-
tein (MBP)-expressing OLs.

MATERIALS AND METHODS

All animal experiments were performed according to proto-
cols approved by the Henry Ford Hospital Institutional Animal
Care and Use Committee.

Isolation of Primary Rat Embryonic OPCs—Primary rat
embryonic OPCs were isolated and prepared according to the
method of Chen et al. (19). Briefly, on embryonic day 17, the rat
embryos were removed from a pregnant Wistar rat in a laminar
flow hood. The cortices were dissected out by using microdis-
secting scissors, rinsed twice in Hanks’ buffered salt solution,
and dissociated after digesting with 0.01% trypsin and DNase at
37 °C for 15 min. The digested cells were washed twice, filtered
through a 70-mm nylon cell strainer, and plated with DMEM
containing 20% fetal bovine serum (FBS) in poly-p-lysine-
coated T75 cell culture flasks (~10 million cells/flask). The cells
grew to confluence for 10 days and then were placed on the
shaker at 200 rpm at 37 °C for 1 h to remove microglial cells.
Subsequently, the cells were left on the shaker for an additional
18-20 h to collect OPCs. The collected OPCs were plated in
untreated Petri dishes for 1 h to remove contaminated micro-
glia and astrocytes, which attach to the Petri dish more effi-
ciently than OPCs. The unattached OPCs were transferred
onto poly-pDL-ornithine-coated Petri dishes at a cell density of
10*/cm® with a basal chemically defined medium containing 10
ng/ml platelet-derived growth factor-a and 10 ng/ml basic
fibroblast growth factor for 7-10 days.

Cell Culture, Transfection, and Treatment with T4—The
mouse primary cultures of OPCs were conditionally immortal-
ized by transformation with a temperature-sensitive large
T-antigen into a mouse OPC cell line, N20.1 (20). N20.1 cells
were provided by Dr. Anthony Campagnoni (UCLA). N20.1
cells were grown and maintained in Dulbecco’s modified
Eagle’s medium (DMEM)/F-12 with 1% FBS and G418 (100
pg/ml) at 37 °C. For N20.1 cells, transient transfections were
performed with the Nucleofector kit according to the manufa-
cturer’s protocol (Amaxa, Germany). The cells (10°) were
mixed with 1 ug of plasmid DNA or 100 pmol of siRNA/
oligonucleotides and pulsed according to the manufacturer’s
instruction. The transfected cells were immediately plated into
Petri dishes with DMEM containing 1% FBS and incubated at
37 °C for 2 days. Primary rat embryonic OPCs were transiently
transfected with Lipofectamine (Invitrogen) overnight, accord-
ing to the manufacturer’s protocol. Amounts of DNA and
siRNA/oligonucleotides were used as recommended by manu-
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facturer. The control plasmid (pcDNA3) was used as a mock-
transfected control for miR-146a expression vector transfec-
tion, and control siRNA (Ambion; a random mixture of
oligonucleotides) was used as a mock-transfected control for
transfections with T4 siRNA, Krox-20/EGR2 siRNA (Santa
Cruz Biotechnology, Inc., Dallas, TX), and anti-miR-146a
inhibitor nucleotides (21).

Oligodendrocyte Differentiation Assay—To investigate the
effect of T4 on oligodendrocyte differentiation, primary rat
embryonic OPCs and mouse N20.1 cells (10* cells/cm?) were incu-
bated at 37 °C with media containing 0, 25, 50, or 100 ng/ml T34
(RegeneRx Biopharmaceuticals Inc., Rockville, MD) without any
growth or differentiation factors. Cells were fed every 2 days for 4
days. Basal defined medium without FBS for primary rat embry-
onic OPCs and DMEM containing 1% FBS for N20.1 cells were
employed. After the treatment with T34, we examined the oligo-
dendrocyte differentiation by measuring the expression of its
marker, MBP, with Western blot and quantitative real-time (qrt-
PCR), as described below. The samples that showed the elevation
of MBP expression after T34 treatment as a positive response to
oligodendrocyte differentiation were utilized for all experiments
involved in oligodendrocyte differentiation. For the treatment
with kinase inhibitors, the cells were pretreated with p38 MAPK-
specific inhibitor (SB 203580) and JNK-specific inhibitor II
(SP600125) (Calbiochem) at the dose of 1 um for 20-30 min
before the addition of T34 into the medium.

LPS Contamination Assay—To test for LPS contamination in
T B4, the cells were cultured in the presence of LPS inhibitor
polymyxin B (50 ug/ml), followed by treatment with T34. T34
(100 ng/ml) was boiled for 10 min in order to denature T34
protein and used as a negative control. Transfected cells (2 X
10* cells/cm?), including mock-transfected controls, were
treated with and without 100 ng/ml T34 (RegeneRx Biophar-
maceuticals Inc.) for 4 days, and fresh medium was provided at
day 2 with/without T 34.

qrtPCR—The extraction of total RNA and preparation of
c¢DNA were performed as described previously (22). The qrt-
PCR amplification was done for 40 cycles in the following ther-
mal cycle using SYBR Green (Invitrogen): 95 °C for 30 s, 60 °C
for 30's, and 72 °C for 45 s. The sequences for each primer were
used, as reported previously (23). After qrtPCR, agarose gel
electrophoresis was performed to verify the quality of the qrt-
PCR products. There were no secondary products in our data.
Each sample was tested in triplicate, and all values were nor-
malized to GAPDH. Values obtained from three independent
experiments were analyzed relative to gene expression data
using the 27247 method (24).

Quantification of Mature MicroRNAs by Real-time qrtPCR—
The cDNA for each microRNA and TagMan assay were per-
formed in triplicate according to the manufacturer’s protocol
specified in the Applied Biosystems ViiA™ 7 real-time PCR
system (Applied Biosystems). Briefly, total RNA was isolated
with TRIzol (Qiagen). The reverse transcription reaction mix-
ture contained 1-10 ng of total RNA, 5 units of MultiScribe
reverse transcriptase, 0.5 mm each dANTP, 1 X reverse transcrip-
tion buffer, 4 units of RNase inhibitor, and nuclease-free water.
The microRNA c¢cDNA was performed by individual reverse
transcription in the following thermal cycle: 16 °C for 30 min,
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42 °C for 30 min, 85 °C for 5 min. The TaqgMan assay was per-
formed in 20-ul TagMan real-time PCRs containing 1X Taq-
Man Universal PCR Master Mix No AmpErase UNG, 1X Taq-
Man microRNA assay buffer, 1.33 ul of undiluted cDNA, and
nuclease-free water. All values were normalized to a U6 snRNA
TagMan microRNA control assay (Applied Biosystems) as the
endogenous control. Values obtained from three independent
experiments were analyzed relative to gene expression data
using the 224" method (24).

Western Blot Analysis—Total protein extracts from the cells
were prepared as described previously (22). The protein
extracts were separated by SDS-PAGE for Western blot analy-
sis. For Western blot analysis, rabbit antiserum for MBP (1:200;
Dako, Carpinteria, CA); monoclonal antibodies (1:1000) for
p38 MAPK, phosphorylated p38 MAPK, c-Jun, and phosphor-
ylated c-Jun (1:1000; Upstate, Charlottesville, VA); rabbit poly-
clonal antibodies (1:1000) for JNK1 and phosphorylated JTNK1
(Promega Corp., Madison, W1I); goat polyclonal antibodies for
TLR2, rabbit polyclonal antibodies for TLR4, TRAF6, IkBa
(1:1000), and Krox-20/EGR2 (1:500), and mouse monoclonal
antibodies for IRAK1 (1:1000) and B-actin (1:5000; Santa Cruz
Biotechnology, Dallas,TX); and mouse monoclonal a-tubulin
antibodies (1:5000; Sigma) were used. Donkey anti-goat, anti-
rabbit, and anti-mouse horseradish peroxidase (1:5000; Jackson
ImmunoResearch, West Grove, PA) were used as secondary
antibodies. Each experiment was repeated at least three times.
The protein bands were quantified based on histogram analysis
relative to gel loading marker a-tubulin in at least three inde-
pendent experiments.

Immunochemistry—Immunofluorescence staining was per-
formed in N20.1 and primary rat embryonic OPC cells. These
cells were fixed with 4% paraformaldehyde for 1 h, washed with
PBS, blocked with 1% serum for 1 h, incubated with monoclonal
antibodies of OPC marker, O4 (1:1000, Chemicon, Billerica,
MA), and a polyclonal antibody against mature OL marker
MBP (1:200; Dako, Carpinteria, CA) at room temperature for
1 h, and rinsed with PBS. Secondary antibodies were labeled
with cyanine fluorophore (Cy3, red fluorescence) for 1 h. The
slides were counterstained with DAPI (blue fluorescence) and
examined under a fluorescent illumination microscope (Olym-
pus IX71/IX51, Tokyo, Japan). O4- and MBP-positive cells
were quantified by counting in at least three slides per experi-
ment for at least three independent experiments. DAPI-posi-
tive cells were considered as the total number of cells.

Statistical Analysis—Data were summarized using mean and
S.D. values. To compare the differences between cell cultures
with T4 treatment and without, a one-sample ¢ test or a two-
sample ¢ test was used. For the comparisons of qrtPCR of
mRNA/GAPDH and qrtPCR of miR-146a/U6, controls were
normalized to 1, so that a one-sample ¢ test was used for anal-
ysis. To compare the percentage of positive stained cells of the
total number of cells between T4 treatment and control, a
two-sample ¢ test was used. A p value of <0.05 was considered
significant.

RESULTS

TB4 Increases Expression of miR-146a in OPCs—We investi-
gated the effect of T4 treatment on the expression of miR-
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FIGURE 1. Immunostaining of primary rat embryonic OPCs. Primary rat
embryonic OPCs were immunostained for O4 labeled with fluorescence Cy3
and counterstained for nuclei with DAPI. The cells were quantified by count-
ing the percentage of O4-positive cells when DAPI-positive cells were consid-
ered as the total number of cells (shown at the bottom). Scale bar, 100 um.

146a and miR-146b in primary rat embryonic OPCs (n = 5) and
in a mouse OPC cell line, N20.1 (n = 5), by qrtPCR. The purity
of rat primary OPCs used in the experiments was confirmed by
immunostaining for O4 and was quantified by cell counting.
The cell counting data showed that >90% of these cells were
O4-positive (Fig. 1). We found that T34 treatment induced the
expression of miR-146a in rat primary embryonic OPCs and
mouse N20.1 cells in a dose-dependent manner (Fig. 24). In
contrast, T34 treatment had no effect on miR-146b expression
in rat primary embryonic OPCs and mouse N20.1 cells (Fig.
2B). Transfection with miR-146a plasmid enhanced miR-146a
expression ~30- to ~50-fold but had no effect on miR-146b
expression in rat primary embryonic OPCs and mouse N20.1
cells (Fig. 2).

TB4 Down-regulates the Intracellular TLR Signaling Path-
way in OPCs—miR-146a targets two proinflammatory cyto-
kines, IRAK1 and TRAF®, in the intracellular TLR signaling
pathway (25). We investigated the effect of T34 treatment on
the TLR signaling pathway in rat primary embryonic OPCs and
mouse N20.1 cells. These cell cultures, which demonstrated
induction of miR-146a expression after T34 treatment (Fig. 2),
were utilized to analyze the expression levels of IRAK1, TRAF®6,
and MBP, the mature OL marker, by Western blot. T34 treat-
ment markedly reduced the expression levels of IRAK1 and
TRAF6 and increased the expression level of MBP in a dose-de-
pendent manner in rat primary embryonic OPCs (n = 3) and
mouse N20.1 OPCs (n = 3) (Fig. 3). These data indicate that the
TLR signaling pathway may be involved in T 84-mediated OPC
differentiation in primary rat embryonic OPCs and mouse
N20.1 cells.

Downstream Signaling of the MAPKs in TR4-mediated Oligo-
dendrocyte Differentiation—We investigated the effect of T34
on MAPKs involved in downstream signaling of the TLR path-
way. Expression of TLR2 and TLR4 was confirmed by Western
blot analysis (Fig. 3). However, treatment with T4 had no
effect on expression of TLR2 and TLR4 (Figs. 3 and 4). Western
blot was performed to measure expression and phosphoryla-
tion of p38 MAPK, ERK1, JNK1, and c-Jun after T34 treatment
(Figs. 3 and 4). T4 treatment induced expression and phos-
phorylation of p38 MAPK, a known regulator of oligodendro-
cyte differentiation, in a dose-dependent manner. In contrast,
TB4 dose-dependently inhibited the phosphorylation of
ERK1/2, JNK1, and c-Jun in primary rat embryonic OPCs and
mouse N20.1 cells (Figs. 3 and 4). During Schwann cell mye-
lination, a similar opposing effect of MAPKs, p38 MAPK, ERK1,
and JNKI, has been reported for the expression of a key tran-
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FIGURE 2. MicroRNA analysis of miR-146a and miR-146b in OPCs after T34 treatment by qrtPCR. The total RNA samples were extracted from primary rat
embryonic OPCs (left) and mouse OPC cell line N20.1 (right) after treatment with T34 at doses ranging from 0 to 100 ng/ml (shown at the bottom) and after
transfection with miR-146a for microRNA analysis of miR-146a (A) and miR-146b (B) by qrtPCR. Note that expression of miR-146a was increased in a dose-de-
pendent manner in both OPCs. In contrast, expression of miR-146b remained unchanged. p < 0.05 was considered as significant.
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FIGURE 3. Western blot analysis of downstream signaling mediators of
TLR in OPCs after TB4 treatment. The protein samples were separated,
transferred, and analyzed from the primary rat embryonic OPCs (left) and
mouse OPC cell line N20.1 (right) after treatment with T84 at doses ranging
from 0 to 100 ng/ml (shown at the top) and analyzed for different protein
expressions. Migrations of proteins are shown at the right. The loading of the
samples was normalized with B-actin and a-tubulin. Molecular mass markers
are shown at the left in kDa. P-, phosphorylated.

scription factor of the MBP promoter, Krox-20, which is also
known as EGR2 (early growth response-2) transcription factor
(23, 26, 27). To determine whether T4 treatment affected
Krox-20 expression in OPCs, we reprobed the Western blots
with Krox-20/EGR2 antibodies in OPCs after T34 treatment.
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FIGURE 4. Quantitative analysis of expression of TLR2, IRAK1, TRAF6,
MBP, phosphorylated ERK1 (P-ERK1), ERK1, phosphorylated JNK1
(P-JNKT1), JNK1, phosphorylated c-Jun (P-c-Jun), c-Jun, phosphorylated
p38 MAPK (P-p38 MAPK), p38 MAPK, and Krox-20 (EGR2) at the protein
level after TB4 treatment. Western blot data from the primary rat embry-
onic OPCs (0) and mouse OPC cell line N20.1 (N) after treatment with T34 at
doses of 0,25, 50, and 100 ng/ml were quantified based on histogram analysis
in comparison with a-tubulin. The bar graph indicates relative protein expres-
sion in comparison with a-tubulin. p < 0.05 was considered as significant.

These data showed that T4 induced Krox-20 expression in
OPC:s (Figs. 3 and 4).

Effect of T4 on Oligodendrocyte Differentiation Marker,
MBP, Is Independent of LPS Contamination in T34—To avoid
confounding data because of any LPS contamination in T34,
the cells were cultured in the presence of polymyxin B (50
pg/ml), followed by TB4 treatment at a dose of 50 and 100
ng/ml for 4 days. The qrtPCR data indicate that T34 treatment
induced the expression of MBP in a dose-dependent manner
even in the presence of polymyxin B (50 pg/ml) in rat OPC and
N20.1 cells in both mRNA and protein levels (Fig. 5, A-C). In
contrast, the boiled denatured T84 (100 ng/ml) treatment had
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FIGURE 5. Application of LPS inhibitor polymyxin B for analysis of MBP expression after T34 treatment to test for confounding factor LPS contami-
nation in T4. The total RNA and protein samples were prepared from primary rat (n = 3) embryonic OPCs and mouse OPC cell line N20.1, which were cultured
in the presence of polymyxin B (50 ug/ml) followed by treatment with T34 at a dose of 50 and 100 ng/ml in three independent experiments. The bar graph (A)
indicates relative mRNA expression in comparison with control for MBP in primary rat embryonic OPCs and mouse N20.1 cells. The protein samples were
analyzed by Western blot (B). Loading of samples shown at the top was normalized with a-tubulin. Molecular mass markers are shown at the fleft in kDa.
Migrations of proteins are shown at the right. The protein bands in Western blot were quantified based on histogram analysis in comparison with a-tubulin in

the bar graph (C). p < 0.05 was considered as significant.

no effect on MBP expression (Fig. 5, A—C). These data sug-
gested that induction of MBP was solely dependent on natural
T4 and independent of LPS contamination.

Effect of miR-146a and Anti-miR-146a on Downstream Sig-
naling Mediators of TLR and MAPKs—We measured protein
expression of IRAK1, TRAF6, and MAPKs in miR-146a-over-
expressing and miR-146a knock-out primary rat embryonic
OPCs (n = 3) and mouse N20.1 cells (n = 3) (Fig. 6). Overex-
pression and knock-out of miR-146a were determined by quan-
titative analysis of miR-146a. The efficacy of transfection was an
increase of miR-146a of 51 = 5.3-fold in N20.1 cells and 33.5 =
4.1-fold in rat OPCs for miR-146a overexpression and a
decrease of 73.1 * 8.3-fold in N20.1 cells and 46.7 = 5.2-fold in
rat OPCs for miR-146a knock-out. Western blot analysis re-
vealed that the miR-146a transfection inhibited expression of
IRAK1 and TRAF6 and increased expression and activation of
p38 MAPK. In contrast, transfection with anti-miR-146a inhib-
itor nucleotides significantly inhibited the expression of MBP
and phosphorylation of p38 MAPK (Fig. 6). Expression of
IRAK1, TRAF6, phospho-ERK1, phospho-JNK, and phospho-
c-Jun remained unchanged or slightly elevated. These data
indicate that miR-146a may be directly involved in OL differ-
entiation by activation of the p38 MAPK signaling pathway in
rat primary embryonic OPCs and mouse N20.1 cells. To deter-
mine whether miR-146a transfection regulates Krox-20 expres-
sion in OPCs, we performed Western blot analysis in rat pri-
mary embryonic OPCs and mouse N20.1 cells. These data
demonstrate that miR-146a transfection markedly up-regu-
lated Krox-20 expression. (Fig. 6).

TB4 Regulates miR-146a Expression—To investigate the
mechanistic link between T4 and miR-146a upon MBP
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FIGURE 6. Effect of miR-146a and anti-miR-146a transfection on down-
stream signaling mediators of TLR. The primary rat embryonic OPCs (left)
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containing a random mixture of oligonucleotides for nucleotide control as a
control for anti-miR-146a nucleotides (shown at the top) and were lysed for
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Molecular mass markers are shown at the left in kDa. P-, phosphorylated.
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FIGURE 7. qrtPCR analysis of MBP, p38 MAPK, and Krox-20/EGR2 in OPCs.
grtPCR analysis of MBP, p38 MAPK, and Krox-20/EGR2 was performed in total
RNA samples extracted from the following transfected primary rat embryonic
OPCs (Rat OPCs) and mouse OPC cell line N20.1 (shown at the bottom). These
cells were transfected with control plasmid (plasmid control) and miR-146a
vector (miR-146a transfection), followed by treatment without and with T34
(100 ng/ml) (miR-146a + TB4). These OPCs were also transfected with anti-
miR-146a and T34 siRNA. p < 0.05 was considered as significant.

expression, we further investigated the effect of both T34 and
miR-146a on the TLR signaling pathways using primary rat
embryonic OPCs (n = 3) and the mouse OPC cell line N20.1
(n = 3). Fig. 7 demonstrates a 2-fold increase in mRNA MBP
expression in the miR-146a transfection and T34 group in rat
primary embryonic OPCs and mouse N20.1 cells. However, a
10-fold increase in mRNA MBP expression is observed when
miR-146a-transfected cells are grown in the presence of T34,
suggesting that T34 amplifies miR-146a-induced MBP expres-
sion. A similar but less robust result is observed when mea-
suring p38 MAPK. Western blot demonstrated similar results
at the protein level, as shown in Fig. 8 (primary rat OPCs) and
Fig. 9 (mouse N20.1 cells). Furthermore, knock-out of miR-
146a or silencing T84 using T34 siRNA (transfection efficiency
of T4 siRNA was 58.3 = 6.2-fold in rat OPCs and 75.1 *
7.9-fold in N20.1 cells) inhibited MBP expression with no effect
on the proinflammatory expression of IRAK1 and TRAF6 or
the MAPKSs, phospho-ERK1, phospho-JNK1, phospho-c-Jun,
and Krox-20 when compared with control (Figs. 8 and 9). Inter-
estingly, silencing T34 using T34 siRNA in miR-146a-overex-
pressing cells showed inhibition of IRAK1 and TRAF6 without
an increase of MBP expression, suggesting that T34 may be
necessary for MBP expression. In contrast, using knock-out
miR-146a cells treated with T34 showed no change in the
expression of MBP, IRAK1, TRAF6, p38 MAPK phospho-
ERK1, phospho-JNK1, phospho-c-Jun, and Krox-20. These
data indicate that miR-146a is a necessary component for T 34-
mediated MBP expression. Relative protein expression is quan-
tified and shown in Fig. 10. Collectively, these results suggest
that TB4 promotes the expression of MBP and Krox-20
through up-regulation of miR-146a.

To determine whether T34 treatment and miR-146a trans-
fection affect NF-kB activation, we investigated a specific
endogenous inhibitor of NF-«kB, IkBa, which sequesters NF-«B
dimers and keeps NF-kB complexes as inactive forms in the
cytoplasm (28). We therefore performed Western blot analysis
by reprobing the blots from T4-treated and miR-146a/anti-
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miR-146a-transfected primary rat embryonic OPCs (n = 3) and
the mouse OPC cell line N20.1 (# = 3) with IkBa antibodies.
These data indicate that T34 treatment and miR-146a transfec-
tion induced IkBa. Silencing miR-146a reversed the effect
of T34 and miR-146a on IkBa induction. Knock-out of T34
neutralized the effect of T34 treatment, but it failed to reverse
the effect of miR-146a transfection on IkB induction (Fig.
8-10). These data suggest that blockage of the TLR4 signaling
pathway induced IkBe, leading to NF-«B activation, because
TLR4 signaling mediators, IRAK1 and TRAF6, are targets of
miR-146a. T34 treatment therefore inhibited NF-kB activation
by inducing IkBa through blocking the proinflammatory TLR4
signaling pathway.

Role of TLR4 Signaling Mediators, IRAKI, TRAF6, p38
MAPK, and JNK1, in Regulation of MBP Synthesis—To deter-
mine whether p38 MAPK and JNK1 regulated MBP expression
after T4 treatment, these OPCs were pre-exposed with spe-
cific pharmaceutical inhibitors, SB203580 for p38 MAPK and
SP600125 for JNK1, followed by treatment with T4 (100
ng/ml). The p38 MAPK-specific inhibitor, SB203580, reversed
the T B4 effect on up-regulation of MBP and Krox-20 expres-
sion at the protein and mRNA levels but induced phosphory-
lation of c-Jun in both rat and mouse OPCs (Figs. 11 and 12). In
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FIGURE 10. Quantitative analysis of expression of MBP, IRAK1, TRAF6,
p38 MAPK, phosphorylated p38 MAPK (P-p38), and Krox-20/EGR2 at the
protein level. Western blot data from the primary rat embryonic OPCs and
mouse OPC cell line N20.1 transfected with control vector and miR-146a
expression vector followed by treatment with/without T84 (100 ng/ml) were
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graph indicates relative protein expression in comparison with a-tubulin (at
left) for MBP, IRAK1, TRAF6, p38 MAPK, phospho-p38 MAPK, and Krox-20
(EGR2) (at the bottom) in primary rat embryonic OPCs and mouse N20.1 cells.

contrast, Western blot data showed that the JNK1-specific
inhibitor, SP600125, increased phosphorylation of p38 MAPK
and augmented MBP and Krox-20 expression but abolished
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phosphorylation of c¢-Jun in these OPCs (Fig. 11). Transfection
either with IRAK1 siRNA or TRAF6 siRNA reduced phosphor-
ylation of JNK1 and c-Jun but increased phosphorylation of p38
MAPK and enhanced the expression of MBP and Krox-20 in
both OPCs in Western blot analysis (Fig. 11). These data sug-
gest that inhibition of JNK1 is necessary for MBP synthesis
because JNK1 phophorylates and activates the transcription
factor c-Jun, which negatively regulates MBP synthesis. On the
other hand, activation/phosphorylation of p38 MAPK was
required for the expression of Krox-20 and MBP. Thus, block-
ing TLR4 signaling after T34 treatment induces the expression
of Krox-20, the transcription factor for the MBP promoter,
which may positively regulate MBP synthesis in these OPCs.
Underlying Signaling Mechanism on the Opposite Effect of
Two MAPKs, p38 MAPK and JNKI, on MBP Synthesis—To
investigate the underlying signaling mechanism on the effect of
p38 MAPK and JNK1 on MBP synthesis, we analyzed the
expression of a key transcription factor of the MBP promoter,
Krox-20 (26, 27, 29). Reduction or deficiency of Krox-20/Egr2
in Schwann cells resulted in the failure of MBP synthesis and
myelination of axons (30 -32). Among these three MAPKs, p38
MAPK shows effects opposite to those of ERK and JNK on the
expression of Krox-20/EGR2 and MBP synthesis in Schwann
cells (26,27, 29). ERK and JNK activate c-Jun, which inhibits the
expression of Krox-20 and MBP synthesis. In contrast, p38
MAPK induces the expression of Krox-20/EGR2 and MBP syn-
thesis in Schwann cells (26, 27, 29). Krox-20/EGR2 is expressed
in the brain and also induces MBP synthesis in glial and olfac-
tory ensheathing cells in mice (33, 34). To examine the expres-
sion of Krox-20/EGR2, we performed Western blot and qrtPCR
analysis in rat OPC (n = 3) and N20.1 cells (n = 3). These OPCs
were pre-exposed with/without pharmaceutical specific inhib-
itors of p38 MAPK and JNK1 followed by T34 treatment. Data
demonstrated that expression of the transcription factor Krox-
20/EGR2 was required for MBP synthesis because knocking
down Krox-20/EGR2 with its siRNA transfection completely
reversed the effect of T34 on MBP synthesis. In contrast, p38
MAPK inhibitor partially reversed the effect of T34 on MBP
synthesis at the protein and mRNA levels in rat OPC and N20.1
cells (Fig. 12). The inhibitors of p38 MAPK and JNK1 showed
an opposing effect for the expression of Krox-20 at the protein
and mRNA levels in rat OPC and N20.1 cells (Fig. 12). These
data illustrate that the transcription factor Krox-20/EGR2 reg-
ulates the underlying signaling mechanism of the opposite
effect of two MAPKs, p38 MAPK and JNK1, on MBP synthesis.
TB4 Treatment and miR-146a Transfection Induce Differen-
tiation of OPC to Mature Oligodendrocytes—Rat primary
embryonic OPCs and mouse N20.1 cells (n = 3) were trans-
fected with control (mock) and miR-146a vector and treated
with and without T84 (100 ng/ml). The OPCs were stained with
immunofluorescence antibodies for mature OL markers (MBP)
and counterstained with DAPI. These data were quantified by
counting the number of MBP-positive cells. DAPI-positive cells
were considered as the total number of cells. The number of
MBP-positive OPCs was significantly increased after treatment
with T B4 or transfection with miR-146a in rat primary embry-
onic OPCs and mouse N20.1 cells (Figs. 13 and 14), respec-
tively. The miR-146a transfection amplified the effect of T34
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FIGURE 13. Immunohistochemistry of MBP in primary rat embryonic
OPCs mouse N20.1 cells. The primary rat embryonic OPCs (left) and N20.1
cells (right) were transfected with control vector (control), and cells were
treated with T4 (100 ng/ml) (TB4 (100 ng/ml)). Similarly, OPCs were also
transfected with miR-146a, and miR-146a-transfected cells were treated with
TB4 (100 ng/ml) (TR4 + 146a). The cells were immunofluorescence-stained
with Cy3-labeled antibody against OL marker MBP and counterstained with
DAPI. Images are merged (Merged).
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FIGURE 14. Quantitative analysis of MBP-positive cells in primary rat
embryonic OPCs and mouse N20.1 cells. Primary rat embryonic OPCs and
mouse N20.1 cells were transfected with control vector and miR-146a vector
(miR-146a transfection) followed by treatment without and with T34 (T4 (100
ng/ml) and miR-146a transfection + T34 (100 ng/ml)). MBP-positive cells after
immunofluorescence staining were quantified by cell counting. The bar
graphindicates the percentage of MBP-positive cells in primary rat embryonic
OPCs and mouse N20.1 cells when DAPI-positive cells were considered as
100% (i.e. total number of cells). p < 0.05 was considered as significant.

treatment on MBP immunostaining of both sets of OPCs.
These data suggest that T34 treatment and miR-146a transfec-
tion induced OL differentiation in both rat primary embryonic
OPCs and mouse N20.1 cells.

DISCUSSION

In this study, we discovered that the pleiotropic peptide,
T B4, regulates miR-146a. We previously demonstrated a strong
association of T34 treatment with OL differentiation in in vivo
and in in vitro models (5-7, 23). The results of this study further
support our central hypothesis of T 34-mediated oligodendro-
genesis. Our data demonstrate that T34 increases expression of
miR-146a in rat primary OPCs and mouse N20.1 OPCs; atten-
uates expression of IRAK and TRAF6; and reduces expression
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of phosphorylation/activation of ERK1, JNK1, and c-Jun, a neg-
ative regulator of MBP. Therefore, these data suggest that T 34-
mediated oligodendrogenesis results from miR-146a suppres-
sion of the TLR proinflammatory pathway and modulation of
the p38 MAPK pathway.

T4 is present in high concentrations (up to 0.4 mm) in var-
ious tissues, including the brain in rats (35). The expression of
T4 in the brain is increased with neurodegenerative disease,
such as Huntington disease (36), as well as in various experi-
mental conditions, such as brain ischemia (37, 38), kainic
acid-induced seizure (39), and hippocampal denervation (40).
Intracerebroventricular administration of T34 (10 wlofa 10 um
solution twice a day over 5 days starting from the day of kainic
acid injection) prevented kainic acid-induced hippocampal
neuronal loss or neurotoxicity (41). Based on this information,
our maximal dose of 100 ng/ml (20.4 nwm) is not toxic and is a
physiologic dose for the treatment of OPCs.

Innate immune signaling pathways are activated in the brain
not only in response to infectious disease but also to injury and
chronic disease (42, 43). Inflammation initiates tissue repair
after injury; however, it must be highly regulated so as not to
harm the healing or recovering tissue. Negative regulation of
the innate immune system is achieved by several proteins and
microRNAs. miR-146a is an important negative regulator of the
innate immune system, and it is also found to be highly
expressed in developing oligodendrocytes during differentia-
tion (15, 17, 18). Therefore, our finding that T34 up-regulates
miR-146a in our in vitro models of OPCs in conjunction with
previous observations that T34 promotes recovery after neuro-
logical injury suggests a multipurpose role of T34 in promoting
oligodendrocyte differentiation as well as modulating the
inflammatory response of the innate immune system by down-
regulating two components of the pathway, IRAK1 and TRAF6.

The functional role of miR-146a in cellular differentiation
has been studied in many different systems. After transfection,
the levels of miR-146a were increased up to 50-fold. This obser-
vation is consistent with cultured human THP-1 cells demon-
strating miR-146a elevation up to 1850-fold in endotoxin toler-
ance experiments. Overexpression of miR-146a up to at least
35-fold was required for endotoxin tolerance (44). Transfection
of miR-146a was also employed previously for tumor suppres-
sion in glioma (45). Lentiviral miR-146a transfection showed a
26-fold increase of wild-type miR-146a and attenuated the pro-
liferation, migration, and tumorigenic potential of Ink4a/
Arf_/_ Pten_|_EgfrvIll murine astrocytes. Expression of miR-
146a in the hematopoietic system promotes macrophage
development from hematopoietic stem cells, and down-regula-
tion of miR-146a influences megakaryocytopoiesis (46). Forced
expression of miR-146a in breast tumor cells inhibits endoge-
nous NF-«B expression and reduces metastatic activity of the
tumor cells (47). Recent work performed by Zhao et al. (48) has
demonstrated that miR-146a is a critical regulator of inflamma-
tion. Using knock-out miR-146a mice exposed to chronic LPS
stimulation, they showed that hematopoietic stem cells are
reduced in number and are converted into miR-146a-deficient
dysfunctional lymphocytes and myeloid cells, which produce
elevated levels of TRAF-6 and NF-«B, resulting in enhanced
production of IL-6. Up-regulation of these factors resulted in
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hematopoietic stem cell depletion, bone marrow failure, and
myeloproliferative disease, suggesting that chronic inflamma-
tion leads to accelerated aging and cancer risk. Therefore, miR-
146a may be a pivotal component in regulating inflammation,
and its absence may lead to the detrimental effects of aging. The
observation that miR-146 is highly expressed in oligodendro-
cyte lineage cells suggests that maturation of oligodendrocytes
occurs in an environment in which chronic inflammation is
down-regulated. Our results showing that T4 increases
expression of miR-146a while promoting differentiation of
OPCs to MBP-positive oligodendrocytes support this hypoth-
esis. Inhibiting miR-146a in TB4-treated cells removed the
inhibitor effect on the expression of IRAK and TRAF6 with no
increase in MBP expression, suggesting that the miR-146a is a
necessary component for MBP expression and down-regula-
tion of the TLR proinflammatory pathway. Moreover, overex-
pression of miR-146a in T B4-treated cells showed an amplified
MBP expression and well as suppression of IRAK and TRAF6.

TLRs activate each of the three major mitogen-activated pro-
tein kinases, ERK, JNKs, and p38 MAPKSs (12). A complex series
of triggering MAPK modules occurs after TLR activation, lead-
ing to eventual activation of the ERK, JNK, and p38 MAPK,
which in turn phosphorylates numerous transcription factors,
proteins, and cytoskeletal proteins influencing cell survival and
controlling the expression of immune mediators. Our observa-
tion of T4 modulation of the two key proinflammatory cyto-
kines, IRAK and TRAF6, with corresponding down-regulation
of the expression of phosphorylation/activation of ERK1, JNK1,
and c-Jun suggests that T34 reduces inflammation, modulates
the MAPKSs, and creates an environment for oligodendrocyte
differentiation. Our previous study using SVZ cells showed
that T4 treatment induced p38 MAPK while suppressing
ERK1 and JNK activity and phosphorylated c-Jun, which
negatively regulates myelin gene promoter activity (23). Data
from this study demonstrate similar results in rat primary
OPCs, suggesting that T84 regulation of the MAPKs pro-
motes oligodendrocyte differentiation. Furthermore, our
data suggest that up-regulation of miR-146a influences acti-
vation of p38 MAPK and corresponding suppression of
ERK1 and JNKI1 and thus promotes differentiation of OPCs
to mature MBP oligodendrocytes.

A similar antagonistic effect of p38 MAPK against JNK1 for
MBP synthesis was also found for Krox-20 expression. Expres-
sion of Krox-20 was required for MBP synthesis in rat and
mouse OPCs. Thus, Krox-20 regulates MBP synthesis and the
mechanism underlying the opposing effect of two TLR4-signal-
ing MAPKs, p38 MAPK and JNK1. Another transcription fac-
tor, c-Jun, which inhibits MBP synthesis, is a downstream
target of JNK1, a serine-threonine kinase that directly phos-
phorylates c-Jun and increases its activity (23, 27). In contrast,
the transcription factor Krox-20, which induces MBP synthesis,
is a downstream target of p38 MAPK, which up-regulates MBP
expression. Thus, these two transcription factors, c-Jun and
Krox-20, are antagonistic for MBP synthesis and oligodendro-
cyte differentiation.

In summary, T34 treatment up-regulates miR-146a expres-
sion in rat primary embryonic OPCs and mouse N20.1 cells.
T4 treatment induced miR-146a suppression of the proin-
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flammatory cytokines IRAK1 and TRAF6, leading to up-regu-
lation of p38 MAPK and inhibition of phospho-c-Jun, a nega-
tive regulator of MBP promoter. T34 regulates miR-146a and
may be required for MBP expression. Furthermore, T4
treatment and miR-146a transfection induced morphological
changes suggestive of OL differentiation. These results provide
further support for the hypothesis that T 34 mediates oligoden-
drogenesis and support its development as a treatment for neu-
rological injury.
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